

13825

DYNAMIC LINK LIBRARY OF
INTERPOLATION/TABLE LOOKUP FUNCTIONS FOR

20SIM

Wesley Bylsma

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
SEPTEMBER 2002

3. REPORT TYPE AND DATES COVERED
JULY – SEPTEMBER 2002

4. TITLE AND SUBTITLE
DYNAMIC LINK LIBRARY OF INTERPOLATION/TABLE LOOKUP
FUNCTIONS FOR 20SIM

5. FUNDING NUMBERS

6. AUTHOR(S)
Wesley Bylsma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

U.S. Army Tank-automotive and
Armaments Command/National
Automotive Center
ATTN: AMSTA-TR-N/MS157
Warren, MI 48397-5000

13825

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: Distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

A dynamic link library (DLL) is developed to perform interpolation/table lookup functions from within 20-SIM by Controllab Products B.V. (Netherlands).
The use of these functions, implemented in the C programming language, provides a multi-platform modeling and simulation environment through 20-
SIM’s C code generation capability. Externally developed interpolation/table lookup functions are necessary since 20-SIM’s internal table lookup
functions are not allowed with its C code generation process.

14. SUBJECT TERMS
20-SIM, dynamic link library, interpolation, table lookup

15. NUMBER OF PAGES
19

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

 ABSTRACT.................................... 1
 1.0 INTRODUCTION.................................... 1
 2.0 DESCRIPTION.................................... 1
 2.1 20-SIM Model 1
 2.2 DLL Function Prototype.................................... 2
 2.3 DLL Internal Storage.................................... 2
 2.4 External Array Function 2
 2.5 Internal Array Function.................................... 3
 2.6 DLL Support Function.................................... 3
 3.0 IMPLEMENTATION.................................... 3
 3.1 Creating the DLL Function.................................... 4
 3.2 Modifying the 20-SIM Function Calls 4
 3.3 Generating the C Code.................................... 4
 3.4 Renaming/Recompiling the DLL Function.................................... 5
 3.5 FORTRAN Interface.................................... 5
 3.6 Interface Issues.................................... 5
 3.7 Support Function Usage.................................... 5
 4.0 SUMMARY.................................... 6
 CONTACT.................................... 6
 REFERENCES.................................... 6
 DEFINITIONS, ACRONYMS, ABBREVIATIONS.................................... 6
 APPENDIX A – DLL Listing (Borland C++ Builder 6) 7

1

Technical Report 13825
September 2002

DYNAMIC LINK LIBRARY OF INTERPOLATION/TABLE

LOOKUP FUNCTIONS FOR 20SIM

Wesley Bylsma
U.S. Army Tank-automotive and Armaments Command

Research, Development and Engineering Center
National Automotive Center

Warren, Michigan 48397-5000

ABSTRACT
A dynamic link library (DLL) is developed to perform
interpolation/table lookup functions from within 20-SIM
by Controllab Products B.V. (Netherlands). The use of
these functions, implemented in the C programming
language, provides a multi-platform modeling and
simulation environment through 20-SIM’s C code
generation capability. Externally developed
interpolation/table lookup functions are necessary since
20-SIM’s internal table lookup functions are not allowed
with its C code generation process.

1.0 INTRODUCTION
The modeling and simulation software 20-SIM
(www.20sim.com) has been developed at the Control
Laboratory of the University of Twente (the Netherlands).
It fully supports graphical and rapid modeling through
iconic diagrams, block diagrams, bond graphs and
equations in an unlimited hierarchical model structure--
allowing the design and analysis of dynamic systems in
an intuitive and user friendly way. While 20-SIM is
based mainly on the Microsoft Windows PC platform, it
provides a tool for C code generation. This capability
provides a means by which a model can be run on
another platform as long as that platform supports the C
programming language. Some of 20-SIM’s built-in
functions, such as table lookups, are not supported by
the code generation process. The use of calls to
dynamic link libraries (DLL’s) is supported and these
calls are included in the C code generated. By writing
needed interpolation/table lookup functions in C, these
functions can be used on any platform—by calls to a
DLL (Windows) or calls directly to a C function compiled
and linked with the model source code. To enable this
multi-platform capability, a dynamic link library of
interpolation/table lookup functions has been written in
C.

2.0 DESCRIPTION
While 20-SIM does not allow some of its built-in lookup
functions to be used in the C code generation process it
does allow calls to DLL’s (subroutines). Two types of
data need to be handled through this process: Internal
arrays and external arrays. Internal arrays are declared
directly within 20-SIM. External arrays are usually large
sets of data that are stored in files outside 20-SIM (such
as road profiles, etc.). They are read in during the
initialization process and kept in temporary memory for
access during the simulation. This requires some
internal static storage space within the DLL to hold the
external arrays values. The internal and external arrays
described here are limited to two dimensions.

2.1 20-SIM Model
In 20-SIM every model or submodel has an
implementation. This can be a composition of lower
level submodels, which themselves are composed of
lower level submodels etc. At the bottom of this
hierarchy the submodels consist of a set of mathematical
equations (equation submodel). These submodels are
therefore known as equation models. All equations used
in 20-SIM are described in the language SIDOPS+.

The general layout of a SIDOPS+ equation model is:

constants

//enter your constants here
parameters

//enter your parameters here
variables

//enter your variables here
initialequations

// enter your initial equations here
code

// enter your equations here
equations

// enter your equations here
finalequations

// enter your final equations here

2

Only the “equations” section is required. The other
sections are optional. It is within this framework that the
functions will be called. A call to a DLL function in 20-
SIM is defined as

out = dll('dll_func.dll','func_name',input);

and could appear in any of the sections that allow
equations. This function call will be used to replace calls
to the “data” and “table” functions.

2.2 DLL Function Prototype
The C function prototype required for DLL functions is

int func_name(double *inarr, int inputs,

 double *outarr, int outputs, int major) ;

where

inarr: pointer to an input array of doubles. The
size of this array is given by the second
argument.

inputs: size of the input array of doubles.

outarr: pointer to an output array of doubles. The

size of this array is given by the fourth
argument.

outputs: size of the output array of doubles.

major: boolean which is 1 if the integration

method is performing a major integration
step, and 0 in the other cases. For
example Runge-Kutta 4 method only has
one in four model evaluations a major
step.

This call only passes a pointer and length to the input
and output variables (and a flag to indicate a minor or
major integration step) which does not pass enough
information to call the interpolation/table lookup routine
at one time. Because of this calling restriction, multiple
DLL functions must be defined to set the necessary
parameters before the interpolation/table lookup function
call. This requires some internal static storage space
(global) within the DLL to store these parameters (initial
values).

2.3 DLL Internal Storage
Although this is not needed for external arrays--since the
complete array information is contained within the static
array structure when it is read in and allocated into static
memory (see AllocateArray in section 2.4)—the
same mechanism is used to avoid more than one
interpolation/table look up function for both types of
arrays. Therefore, for both external and internal arrays,
multiple function calls are made to initialize these

parameters before the interpolation/table lookup function
call.

The necessary internal static storage needed to access
external array information during the simulation and to
accommodate this parameter initialization is defined by
the following global structure/variables at the beginning
of the DLL.

#define FLEN 512 // filename length
#define NARR 10 // max # of arrays
#define ALEN 30000 // max array length

typedef struct {
 char filename[FLEN];
 double mem[ALEN];
 int size;
 int dimy;
 int dimx;
 } arrstruct; // external array struct

// external array structure
static arrstruct arr[NARR]; // external arrays
static int arrnum; // external array # to work on

// interpolation/table lookup parameters space
static double *arrx; // pointer to x array
static double *arry; // pointer to y array
static double *arrxy; // pointer to xy array
static int size; // dimension of array (1 or 2)
static int dimy; // length of y dimension
static int dimx; // length of x dimension

This structure is defined so that pointers to the arrays
(external or internal), array size, and array dimension are
set before the interpolation/table lookup function is
called. A description for the set of function calls that
implement this multi-call scheme is given first for
external arrays (section 2.4) and then internal arrays
(section 2.5).

2.4 External Array Functions
The external array functions are described below and
each operates on the global structure. All have the
same prototype for DLL’s as described in section 2.2:

SetArrNum
Sets “arrnum” to the number in the first location of the
input pointer passed (inarr). Defines what array in
“arr[]” to work on.

SetFileName
Copies the string pointed to by the input pointer into
“arr[arrnum].filename” Prerequisite: Must call
SetArrNum to define array number to work on.

AllocateArray
Reads into “arr[arrnum].mem” the data contained in
“arr[arrnum].filename” and sets
“arr[arrnum].size”, “arr[arrnum].dimy”, and
“arr[arrnum].dimx”. Prerequisite: Must call
SetArrNum to define array number to work on.

3

The data file must be in the following format (“%” denotes
comments and “%%” denotes a command—both can
appear only in the header):

---BOF---
%
% %%NDIM:# defines the number of
% dimensions (1 or 2)
%
% %%DIMS:# defines the length of each
% dimension(or %%DIMS:# # if 2 dimension)
%
% file name
%%NDIM:1
%%DIMS:10
0.000000
3.000000
.
.
.
---EOF---

SetXdll
Copies the pointer to “arr[arrnum].mem” to the x
array pointer “arrx”. Prerequisite: Must call
SetArrNum to define array number to work on.

SetYdll
Copies the pointer to “arr[arrnum].mem” to the y
array pointer “arry”. Prerequisite: Must call
SetArrNum to define array number to work on.

SetXYdll
Copies the pointer to “arr[arrnum].mem” to the xy
array pointer “arrxy”. Prerequisite: Must call
SetArrNum to define array number to work on.

InterpDll
Uses the pointers in “arrx”, “arry”, “arraxy”,
“arr[arrnum].size”, “arr[arrnum].dimy”, and
“arr[arrnum].dimx” to perform an interpolation using
the first location of the input pointer as lookup value “x”
and the second location (if size = 2) of the input pointer
as lookup value “y”. The value obtained is passed back
to the first location pointed to by the output pointer
(outarr). Prerequisite: Must call SetArrNum to define
array number to work on. This function can be replaced
with a call to “SetSize” and “Interp”.

2.5 Internal Array Functions
The internal array functions are described below and
each operates on the global structure. All have the
same prototype for DLL’s as described in section 2.2.

SetSize
Sets “size”, “dimy”, and “dimx” to the number in the
first, second, and third location of the input pointer
passed, respectively.

SetX
Copies the input array pointer to the x array pointer
“arrx”.

SetY
Copies the input array pointer to the y array pointer
“arry”.

SetXY
Copies the input array pointer to the xy array pointer
“arrxy”.

Interp
Uses the pointers in “arrx”, “arry”, “arraxy”, “size”,
“dimy”, and “dimx” to perform an interpolation using the
first location of the input pointer as lookup value “x” and
the second location (if size = 2) of the input pointer as
lookup value “y”. The value obtained is passed back to
the first location pointed to by the output pointer
(outarr).

2.6 DLL Support Functions
Several other miscellaneous functions are described
below:

Initialize
Used to perform necessary initialization tasks when the
DLL is loaded.

Terminate
Used to perform necessary termination tasks when the
DLL is unloaded.

printnum
Searches through “in1[]” for each name in “list1[]”
and prints out the array index of the location where the
name is found. This function is used to identify the array
location number for parameters, variables, etc. for direct
modification of values in the generated C code. The
prototype of this function is

int printnum(char *in1[], int inl, char *list1[],

 int listl)

where

in1[]: list of names to search for.

in1: size of “in1[]” input array of names.

list1[]: list of defined names to search in.

list1: size of “list1[]” search array of names.

3.0 FUNCTION IMPLEMENTATION
During the actual implementation of these functions
issues arise that should be noted. These are platform
specific. This particular implementation was
accomplished using Borland C++ Builder 6 for testing
the DLL with 20-SIM on the PC platform, and then code
was transferred to an SGI Irix (Unix) platform.

4

3.1 Creating the DLL Functions
For the PC platform (using Borland C++ Builder 6), the
“extern "C"” and “__declspec(dllexport)”
specifiers are required to export functions, data, and
objects from a DLL. An example of this for the
SetArrNum function is

extern "C" __declspec(dllexport)int SetArrNum(double
*inarr, int inputs, double *outarr, int outputs, int
major) ;

See Appendix A for the particular DLL entry point
subroutine. (Specific to the Borland C++ Builder is the
inclusion of the “.LIB” file in the project which is made
with the IMPLIB command.)

3.2 Modifying the 20-SIM Function Calls
The following illustrates the equation model sections and
calling sequence needed to handle external arrays.
(Notice the underscore (“_”) prefix to the function name
due to Borland C++ Builder)

parameters
// string filename;
// integer column;
 string fncyclex = 'fmtv_cycle_x.arr';
 string fncycley = 'fmtv_cycle_y.arr';

variables
 real parm[3];
 real tmp;

initialequations
if TRUE then
 parm[1] = 1.0;
 tmp = dll('dllinterp.dll','_SetArrNum',parm);
 tmp = dll('dllinterp.dll','_SetFileName',

fncyclex);
 tmp = dll('dllinterp.dll','_AllocateArray',parm);
 parm[1] = 2.0;
 tmp = dll('dllinterp.dll','_SetArrNum',parm);
 tmp = dll('dllinterp.dll','_SetFileName',

fncycley);
 tmp = dll('dllinterp.dll','_AllocateArray',parm);
end;

equations
if TRUE then
 parm[1] = 1.0; // array index
 tmp = dll('dllinterp.dll','_SetArrNum',parm);
 tmp = dll('dllinterp.dll','_SetXdll',parm);
 parm[1] = 2.0; // array index
 tmp = dll('dllinterp.dll','_SetArrNum',parm);
 tmp = dll('dllinterp.dll','_SetYdll',parm);
 parm[1] = time; // lookup value
 output = dll('dllinterp.dll','_InterpDll',parm);
end;

//20SIM function replaced
// output = data (filename, column);

A summary of the process is as follows—a string is
declared for each array file to be used. File
“fmtv_cycle_x.arr” is read into array number 1 and
file “fmtv_cycle_y.arr” is read into array number 2.

(array indexes can start at zero since arrays are zero
based in C). Storage of each array is done during
initialization (initialequations section) so that the
data is available during the simulation. The array
number and filename are set before they are read in
using “AllocateArray”. During the simulation, the
array number is set to point to the appropriate array (X
or Y) and then a pointer to it is copied into the global
static parameters used by the interpolation function. The
size of the array indexed by “SetArrNum” determines
how many lookup indexes to pass (one, time in this
case). Notice the inclusion of the “if TRUE then” and
“end;” bracketing of the calling sequence. This is
necessary to prevent 20-SIM from trying to reorder the
equations. The “code” section can also be used for this
purpose. String variables can also be used in the DLL
call for the DLL name and the DLL function name.

The following illustrates the equation model sections and
calling sequence needed to handle internal arrays.

parameters
 real engdat_x[12];
 real engdat_y[22];
 real engdat[22,12];

variables
 real parm[3];
 real tmp;

equations
if TRUE then
 tmp = dll('dllinterp.dll','_SetX',engdat_x);
 tmp = dll('dllinterp.dll','_SetY',engdat_y);
 tmp = dll('dllinterp.dll','_SetXY',engdat);
 parm[1] = 2.0; // array dimensions
 parm[2] = 22; // size of y dimension
 parm[3] = 12; // size of x dimension
 tmp = dll('dllinterp.dll','_SetSize',parm);
 parm[1] = fuel; // x lookup value
 parm[2] = omega; // y lookup value
 z = dll('dllinterp.dll','_Interp',parm);
end;

A summary of the process is as follows--during the
simulation, a pointer to each array is copied into the
global static parameters used by the interpolation
function. Notice that two lookup indexes were passed
(fuel and omega) in this case since the size of the
array was specified to be two (see “SetSize”).

3.3 Generating the C Code
The code generation process within 20-SIM should be
capable of producing C code for the model or submodel
once the 20-SIM functions have been replaced with the
DLL calls. The files generated are named with a prefix
of “xx” (eg. “xxmodel.c”). Modification of the
“targets.ini” file allows the prefix “xx” to be changed
to another desired prefix string.

5

3.4 Renaming/Recompiling the DLL functions
The calls to the DLL functions from the generated C
code will have the following structure

dllinterp_Initialize ();
dllinterp__myGetFile ("eng_trq.dat", 1, &xx_V[263],

 1, xx_major);

In the C code generation process, the name of the DLL
being called, in this case “dllinterp”, has been added
to the beginning of the DLL function name. This prefix
will have to be added to the DLL function/subroutine
names before compiling on another platform. It should
be noted, as before, that some function names may also
require a leading underscore (“_”) __in the 20SIM
environment. This is the case for the Borland C++
Builder since it automatically appends an underscore as
a prefix to the function names. The use of “extern
“C”” may also be required to avoid mangled function
names in the C++ environment.

Once the DLL functions (used on the 20-SIM platform)
have been renamed with the DLL name as a prefix, they
can be recompiled on another platform and linked into
the model executable. The DLL functions will now be
called directly by the model executable.

3.5 FORTRAN Interface
Since the model/submodel from 20-SIM will be
generated directly into C code, calling it from another C
program should be trivial. Calling the model from
FORTRAN presents a set of interface issues that will be
discussed, but are implementation specific. For the
particular version (MIPSProF77) and platform SGI Irix
used here, calling C functions from FORTRAN requires
the C functions to be declared “EXTERNAL”, “double” C
variables be declared “DOUBLE PRECISION”, and “int”
C variables to be declared “INTEGER”—such as

 DOUBLE PRECISION u(5),y(5)
 INTEGER maj
 EXTERNAL XXInitializeSubmodel
 EXTERNAL XXCalculateSubmodel
 EXTERNAL XXTerminateSubmodel

The model call looks like

 CALL XXCalculateSubmodel(%ref(u), %ref(y),
 & %val(time))

where “%ref()” passes the variable by reference and
“%val” passes the variable by value. The variable
“time” is passed by value (see the function prototype in
“XXCalculateSubmodel”). If your implementation of
FORTRAN does not allow passing by value, the
model/submodel subroutines and their prototype will
have to be modified to accept a reference to the variable
and then use a temporary variable to get the value from
the reference passed to the function.

Modification can also be made to the
“XXCalculateSubmodel” subroutine to pass back more
variables through modification of the calling prototype.
Finally, the model functions (or any C function called)

XXInitializeSubmodel
XXCalculateSubmodel
XXTerminateSubmodel

should be renamed as lowercase with an “_” as a suffix
to satisfy the FORTRAN calling interface to C functions.

3.6 Interface Issues
A mechanism must be implemented to ensure that the
initialization “XXInitializeSubmodel” and
termination “XXTerminateSubmodel” functions are
called only once, at the beginning and end of the
simulation, respectively.

The code generation process does include simple
integrators (eg. Euler, Runge-Kutta (RK2)) as part of the
model code. Consideration must be given as to how the
integration of state variables will be handled. One
method is to use the integrators included with the model
and make sure its time steps are synced with the calling
program’s, or the second method is to have the calling
program’s integrator handle the state variables. The
second method involves replacing calls to the built-in
integrator with a process that will have the calling
program update the state variables directly. This issue
arises when calling “XXCalculateSubmodel”

While 20-SIM defines the function prototype required for
DLL functions, it does not do type checking on them.
The passing of a string to the “SetFileName” function
in 20-SIM is permissible through the use of the “union”
structure

 char *NamePtr;
 union
 {
 double realval;
 char *strval;
 } value;
 value.realval = inarr[0];
 NamePtr = value.strval;

However, when the C code is generated it will place a
string variable (type “*char”) as the first argument to the
“SetFileName” function (as the input array). Compiling
the code will result in a type mismatch. Outside of the
20-SIM environment, we are no longer restricted to use
the DLL required prototype and should thus change the
first argument of the prototype to this function to be
“*char”.

3.7 Support Function Usage
The “printnum” function is used to identify the array
location number for parameters, variables, etc. for direct
modification of values in the generated C code.

6

Currently in 20-SIM, there are six arrays in which to
search for names:

1. xx_constant_names[]
2. xx_parameter_names[]
3. xx_variable_names[]
4. xx_state_names[]
5. xx_rate_names[]
6. xx_matrix_names[]

A call to “printnum” for each one may be in order if you
are not sure which array the name you are looking for is
in. The file “xxmodel.c” defines the dimension of these
name arrays. For each name array there is a
corresponding value array:

1. xx_constants[]
2. xx_parameters[]
3. xx_variables[]
4. xx_states[]
5. xx_rates[]
6. xx_matrices[]

and a pointer to each of these value arrays

1. xx_C
2. xx_P
3. xx_V
4. xx_S
5. xx_R
6. xx_M

An example of using the “printnum” function is given
below. The following code should be inserted into the
generated C code “xxmain.c” to find the named
variables/state array indexes.

char *list[]={"cycle\\output",

"Submodel6\\Accumulator\\Function\\output",
"VehiclePitch\\tire_rear2\\X\\output",
"Driver\\ms_mph\\output",
“Submodel6\\Engine\\omega_rpm\\output",NULL};

printf("xx_variable_names\n");
printnum(&xx_variable_names[0],3033,&list[0],5);
printf("xx_state_names\n");
printnum(&xx_state_names[0],41,&list[0],5);
exit(0);

A summary of the process is as follows--here “*list[]”
is an array of names you want to find an index for with
length five. Two calls are made, one to search the
variable name array, with length 3033, and one to
search the state name array, with length 41. The output
below indicates what index value you should look for in
the generated C code (“xxmodel.c”) to change or

modify the named value. (Remember to remove the
“exit(0)” command and comment out this section
when finished.) Sample results of calling this function
are below

xx_variable_names
Total:5
0. cycle\output [1772]
1. Submodel6\Accumulator\Function\output [2769]
3. Driver\ms_mph\output [1800]
4. Submodel6\Engine\omega_rpm\output [2172]

xx_state_names
Total:5
2. VehiclePitch\tire_rear2\X\output [18]

To find the “Driver\ms_mph\output” variable in the
generated C code for the model you would look for
“xx_variables[1800]” or “xx_V[1800]”.

4.0 SUMMARY/CONCLUSION
A dynamic link library (DLL) is developed to perform
interpolation/table lookup functions from within 20-SIM.
The use of these functions allows 20-SIM models to be
ported to other platforms through the use of its C code
generation capability. A set of DLL functions (C
subroutines) were developed to handle external and
internal arrays with a maximum dimension of two.

CONTACT
The author is a an engineer at the U.S. Army Tank-
automotive and Armaments Command, Research,
Development and Engineering Center (TACOM-
TARDEC). Interested parties can contact the author at
the U.S. Army Tank-automotive and Armaments
Command, ATTN: AMSTA-TR-N/MS157, Warren,
Michigan 48397-5000, bylsmaw@tacom.army.mil.

REFERENCES
“Getting Started with 20-Sim” (Version 3.2), Controllab
Products B.V., Enschede, Netherlands. December
2001.

DEFINITIONS, ACRONYMS, ABBREVIATIONS
DLL – Dynamic Link Library
TACOM - U.S. Army Tank-automotive and
 Armaments Command
TARDEC - TACOM Research, Development and
 Engineering Center
NAC - National Automotive Center

7

APPENDIX A – DLL Listing (Borland C++ Builder 6)

//---

#include <string.h> //strcmp

#include <stdio.h>

#include <stdlib.h> /* calloc */

#include <string.h> /* strcpy */

#include <windows.h>

//---

// Important note about DLL memory management when your DLL uses the

// static version of the RunTime Library:

//

// If your DLL exports any functions that pass String objects (or structs/

// classes containing nested Strings) as parameter or function results,

// you will need to add the library MEMMGR.LIB to both the DLL project and

// any other projects that use the DLL. You will also need to use MEMMGR.LIB

// if any other projects which use the DLL will be performing new or delete

// operations on any non-TObject-derived classes which are exported from the

// DLL. Adding MEMMGR.LIB to your project will change the DLL and its calling

// EXE's to use the BORLNDMM.DLL as their memory manager. In these cases,

// the file BORLNDMM.DLL should be deployed along with your DLL.

//

// To avoid using BORLNDMM.DLL, pass string information using "char *" or

// ShortString parameters.

//

// If your DLL uses the dynamic version of the RTL, you do not need to

// explicitly add MEMMGR.LIB as this will be done implicitly for you

//---

#define FLEN 512

#define NARR 10 // 10 arrays

#define ALEN 30000

typedef struct {

 char filename[FLEN];

 double mem[ALEN];

 int size;

 int dimy;

 int dimx;

 } arrstruct;

static arrstruct arr[NARR];

8

static int arrnum;

static double *arrx;

static double *arry;

static double *arrxy;

static int size;

static int dimy;

static int dimx;

int interp1(double *x, double *y, int l, double xi, double *yo);

int interp2(double *x, double *y, double *z, int m, int n, double xi, double yi, double *zo);

int readtbl2d(const char *file, double *arr2d);

extern "C" __declspec(dllexport)int SetArrNum(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetFileName(double *inarr, int inputs, double *outarr, int outputs, int major) ;

//extern "C" __declspec(dllexport)int SetFileName(char *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int AllocateArray(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetX(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetXdll(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetY(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetYdll(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetXY(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetSize(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int SetXYdll(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int Interp(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int InterpDll(double *inarr, int inputs, double *outarr, int outputs, int major) ;

extern "C" __declspec(dllexport)int Initialize();

extern "C" __declspec(dllexport)int Terminate();

extern "C" __declspec(dllexport)int printnum(char *in1[], int inl, char *list1[], int listl);

#pragma argsused

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned long reason, void* lpReserved)

{

 return 1;

}

//---

9

int Initialize()

{

 return 0; // do nothing now

}

int Terminate()

{

 return 0; // do nothing now

}

/* printnum */

int printnum(char *in1[], int inl, char *list1[], int listl)

{

 int i,j,k;

 printf("Total:%d\n",listl);

 for (j=0;j<listl;j++)

 {

 for (i=0;i<inl;i++)

 {

 k = strcmp(list1[j],in1[i]);

 if (k==0)

 {

 printf("%d. %s [%d]\n",j,in1[i],i);

 break;

 }

 }

 }

 return 0;

}

int SetArrNum(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arrnum = (int) *inarr;

 return 0;

}

10

int SetFileName(double *inarr, int inputs, double *outarr, int outputs, int major)

//int SetFileName(char *inarr, int inputs, double *outarr, int outputs, int major)

{

 char *NamePtr;

 union

 {

 double realval;

 char *strval;

 } value;

 value.realval = inarr[0];

 NamePtr = value.strval;

 strcpy(arr[arrnum].filename,NamePtr);

 return 0;

}

#define BUFLEN 1024

int AllocateArray(double *inarr, int inputs, double *outarr, int outputs, int major)

{

/* readtbl2d.c

 Reads in 2d table from file according to format.

 02-03-27 Update syntax.

 02-03-18 Created.

 ---INPUT FILE FORMAT---

 %%NDIM:# dimenstions

 %%DIMS:dim1 dim2 dim3 dim4 ...

 val()

 %comment

 val()

 ...

*/

 /* ---VARIABLES--- */

 FILE *fin; /* file handle */

 int val; /* scanned value */

 int ndim; /* number of dimensions */

11

 int dims[2]; /* size of dimensions read in */

 char buff[BUFLEN]; /* read buffer */

 int row; /* row counter */

 int col; /* col counter */

 double dtmp; /* temporary double */

 int i,j;

 fin = fopen(arr[arrnum].filename,"rt");

 fseek(fin,0,SEEK_SET);

 if (fin == NULL)

 {

 fclose(fin);

 return -1;

 }

 /* ---PROCESS HEADER--- */

 ndim = dims[0] = dims[1] = row = col = 0;

 while (fgets(buff,BUFLEN,fin) != NULL)

 {

 if (strncmp(buff,"%%",2)==0)

 {

 if (strncmp(&buff[2],"NDIM:",5)==0)

 {

 val = sscanf(&buff[7],"%d\n",&ndim);

 arr[arrnum].size = ndim;

 }

 else if (strncmp(&buff[2],"DIMS:",5)==0)

 {

 if (ndim == 2)

 {

 val = sscanf(&buff[7],"%d %d\n",&dims[0],&dims[1]);

 arr[arrnum].dimy = dims[0];

 arr[arrnum].dimx = dims[1];

 if (dims[0] > ALEN || dims[1] > ALEN)

 {

 fclose(fin);

 return -1;

 }

 }

 if (ndim == 1)

 {

12

 /*keep dim format as if for 2d - col in dim[1] */

 val = sscanf(&buff[7],"%d\n",&dims[1]);

 dims[0]= 1;

 arr[arrnum].dimy = dims[0];

 arr[arrnum].dimx = dims[1];

 }

 }

 }

 else if(strncmp(buff,"%",1)!=0)

 {

 break;

 }

 }

 if ((ndim != 1) && (ndim != 2))

 {

 fclose(fin);

 return -1;

 }

 val = sscanf(&buff[0],"%lf\n",&dtmp);

 *(arr[arrnum].mem+row*dims[1]+col)=dtmp;

 col++;

/* check col bound here */

/* if ((ndim != dim[0]) || (dims[0] != dim[1]) || (dims[1] != dim[2]))

 {

 exit(0);

 return -1;

 } */

 /* ---PROCESS DATA--- */

 while (fgets(buff,BUFLEN,fin) != NULL)

 {

 if (strncmp(buff,"%",1)==0) continue;

 val = sscanf(&buff[0],"%lf\n",&dtmp);

 *(arr[arrnum].mem+row*dims[1]+col)=dtmp;

 col++;

 if (col >= dims[1])

13

 {

 row++;

 col = 0;

 /* check row bound here */

 }

// if (row >= dim[1]) break;

 if (ndim != 1) {

 if (row >= dims[0]) break;

 }

 }

 fclose(fin);

 return 0;

}

int SetX(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arrx = inarr;

 return 0;

}

int SetXdll(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arrx = arr[arrnum].mem;

 return 0;

}

int SetY(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arry = inarr;

 return 0;

}

int SetYdll(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arry = arr[arrnum].mem;

 return 0;

}

14

int SetXY(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arrxy = inarr;

 return 0;

}

int SetSize(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 size = (int) *(inarr);

 dimy = (int) *(inarr+1);

 dimx = (int) *(inarr+2);

 return 0;

}

int SetXYdll(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 arrxy = arr[arrnum].mem;

 return 0;

}

/* must set arrx,arry,arrxy before call */

int InterpDll(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 int ierr;

 double xd,yd,tmp;

 xd = *(inarr);

 yd = *(inarr+1);

 if (arr[arrnum].size == 1)

 {

 ierr = interp1(arrx,arry,arr[arrnum].dimx, xd, outarr);

 }

 else

 {

 ierr = interp2(arrx,arry,arrxy,arr[arrnum].dimx,arr[arrnum].dimy, xd,yd, outarr);

 }

 return 0; //return successful

}

15

int Interp(double *inarr, int inputs, double *outarr, int outputs, int major)

{

 int ierr;

 double xd,yd;

 xd = *(inarr);

 yd = *(inarr+1);

 if (size == 1)

 {

 ierr = interp1(arrx,arry,dimx, xd, outarr);

 }

 else

 {

 ierr = interp2(arrx,arry,arrxy,dimx,dimy, xd,yd, outarr);

 }

 return 0; //return successful

}

/* interp1.c

 This is a 1D interpolation subroutine. Given x,y and xi return

 interplated value yo. Return function value is index s or -s if

 out of range. If out of range, yo is extrapolated.

 02-03-27 Updated syntax.

 02-03-11 Converted to C from F90. Indexes in C are zero "[0]" based.

 Adjust s, e, pvt's accordingly.

*/

//#include <stdio.h>

int interp1(double *x, double *y, int l, double xi, double *yo)

{

 /* ---VARIABLES--- */

 int s; /* start index */

 int e; /* end index */

 int pvt1; /* pivot pt 1 */

 int pvt2; /* pivot pt 2 for even */

 int i; /* process counter */

16

 s = 0; /* start at very beginning */

 e = l - 1; /* start at very end */

 /* check for range error */

 if (xi < *(x))

 {

 /* if no extrapolation use -> *yo = *(y); */

 /* extrapolate */

 s = 0;

 e = s + 1;

 // *yo = *(y + s) + (xi - *(x + s)) * (*(y + e) - *(y + s)) / (*(x + e) - *(x + s));

 *yo = *(y);

 // return -s; /* (-) means out of range */

 return s; /* no extrap*/

 }

 else if (xi > *(x + l - 1))

 {

 /* if no extrapolation use -> *yo = *(y + l - 1); */

 /* extrapolate */

 e = l - 1;

 s = e - 1;

 // *yo = *(y + s) + (xi - *(x + s)) * (*(y + e) - *(y + s)) / (*(x + e) - *(x + s));

 *yo = *(y + l - 1);

 // return -s; /* (-) means out of range */

 return s; /* no extrap */

 }

 /* ---PROCESS LOOP--- */

 for (i = 0; i < l; i++)

 {

 if ((e - s) % 2 == 0)

 {

 /* ---EVEN--- */

 pvt1 = s + (e - s) / 2;

 if (xi == *(x + pvt1))

 {

 *yo = *(y + pvt1);

 return pvt1;

 }

17

 if (xi > *(x + pvt1))

 {

 s = pvt1; /* top half */

 }

 else

 {

 e = pvt1; /* bottom half */

 }

 }

 else

 {

 /* ---ODD--- */

 pvt1 = s + (e - s - 1) / 2;

 pvt2 = pvt1 + 1;

 if (xi > *(x + pvt2))

 {

 s = pvt2; /* top half */

 }

 else if (xi < *(x + pvt1))

 {

 e = pvt1; /* bottom half */

 }

 else

 {

 s = pvt1; /* between these */

 e = pvt2;

 }

 }

 if ((e - s) <= 1)

 {

 /* ---FINAL ANSWER--- */

 *yo = *(y + s) + (xi - *(x + s)) * (*(y + e) - *(y + s)) / (*(x + e) - *(x + s));

 return s;

 }

 }

 return -1;

}

18

/* interp2.c

 This is a 2D interpolation subroutine. Given x,y,z,xi and yi return

 interplated value zo. Return function value is -s if

 out of range. Uses interp1

 02-03-27 Updated syntax.

 02-03-11 Converted to C from F90. Indexes in C are zero "[0]" based.

*/

//#include <stdio.h>

/*int interp1(double *x, double *y, int l, double xi, double *yo)*/

int interp2(double *x, double *y, double *z, int m, int n, double xi, double yi, double *zo)

{

 /* ---VARIABLES--- */

 int sx; /* start x index */

 int sy; /* start y index */

 int ierr; /* error return code */

 double valy; /* interpolated value of y1 */

 double valy1; /* interpolated value of y2 */

 double tmp; /* temporary variable */

 /* ---GET INDEXES--- */

 sx = interp1(x,x,m,xi,&tmp);

 sy = interp1(y,y,n,yi,&tmp);

 /* ---IF YOU DO NOT WANT EXTRAPOLATION UNCOMMENT THIS CODE---

 % if (sx==-1 || sy==-1)

 % {

 % *(zo) = -1;

 % return -1;

 % }

 */

 /* ---GET Y'S FROM X'S--- */

 /* take care of divide by zero case */

19

 if (*(x + (sx+1)) == *(x + sx))

 {

 valy = *(z + sy*m + sx);

 valy1 = *(z + (sy+1)*m + sx);

 }

 else

 {

 valy = *(z + sy*m + sx) + (xi - *(x + sx)) * (*(z + sy*m + (sx+1)) - *(z + sy*m + sx)) / (*(x + (sx+1)) - *(x + sx));

 valy1 = *(z + (sy+1)*m + sx) + (xi - *(x + sx)) * (*(z + (sy+1)*m + (sx+1)) - *(z + (sy+1)*m + sx)) / (*(x + (sx+1)) - *(x + sx));

 }

 /* ---GET Z FROM Y'S--- */

 if (*(y + (sy+1)) == *(y + sy))

 {

 *zo = valy;

 }

 else

 {

 *zo = valy + (yi - *(y + sy)) * (valy1 - valy) / (*(y + (sy+1)) - *(y + sy));

 }

 tmp = *zo;

 return 0;

}

